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Arbitrariness and fairness

Existing fairness practices...

Look at error rates across groups (definite)

typically, for a single model (feasible)

This can lead to arbitrary outcomes

(Cooper & Abrams, AIES "21 Oral; Cooper* et al. ICLR 21 Workshop Oral, Cooper* et al. FAccT 22

Individual models — distributions over possible

(Cooper et al. CSLAW ‘22

models

Table 2 Definitions and classifications for

1g classification metrics

Metric Abbreviation Definition
1. Predicted outcomes
Statistical parity Sp All groups have equal probability of being assigned to the

— Treatment parity TPar
Conditional statistical parity CSpP

2. Predicted and actual outcomes
Conditional use accuracy CUA

Predictive parity PP
Equalized odds EO
False positive error rate balance FPERB
False negative error rate balance FNERB

positive class

Proportion of positive predictions of all groups must be
similar

Requires statistics for all groups to be equal, allowing for a
set of legitimate factors L = ¢

Similar positive and negative predictive values across
groups

Similar positive predictive values (or FDR) across groups

Similar false positive and false negative rates across groups

Similar false positive rates (or TNR) across groups

Similar false negative rates (or TPR) across groups

Equal ratio of false negatives and false positive between
groups

Requires similar accuracy across groups

All groups have equal probability to belong to the positive
class.

The probability of all groups to belong to the positive class
is the predicted probability score p € P.

Equal mean predicted probabilities for all people in the
positive class, regardless of group

Treatment equality TE

Overall accuracy equality OAE

3. Predicted probabilities and actual outcomes
Test fairness TF

Well calibration wC

Balance for positive class BPC

Balance for negative class BNC

Equal mean predicted probabilities for all subjects in the
negative class, regardless of group




An intuition for arbitrariness

Training 100 different logistic regression models on COMPAS using bootstrapping
(split into train/test sets)
(resample train set)
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Arbitrariness and fairness

0
_5 100- mm y=1 (= recidivates)

§ mm y=0 (= does not recidivate)
T 197

g

o

= 50 A

gl

o)

= 25+

Y

o

# 0

Ind. 1 Ind. 2
Two individuals from COMPAS

Training 100 different logistic regression models on COMPAS using bootstrapping

Looking at the resulting predictions for 2 individuals in the test set
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Arbitrariness and fairness
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Arbitrariness and fairness
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Arbitrariness and fairness
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We turn this picture into a metric (self-consistency) to capture arbitrariness
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Our contributions

Quantifying arbitrariness via self-consistency
Developing an algorithm that abstains from making arbitrary predictions
Running a large-scale empirical study on the role of arbitrariness in fair classification

Packaging a large-scale dataset (won’t get into this, but at the end will explain why)
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From intuition to metric
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Definition 3. For all pairs of possible models hp,,hp; ~ jt (i # j), the self-consistency of the
learning process for a test (x,g) is

SC (.A,]D,(:Bg)) é]EhDi ~uhp;~p [th ((L‘) = h'Dj ((D)] =DPhp, ~php;~p (h'D; (m) = hDj ((1})) . (2)

In words, (2) models the probability that two models produced by the same learning process on
different n-sized training datasets agree on their predictions for the same test instance.® Like variance,
we can derive an empirical approximation of SC. Using the bootstrap method with B=By+ B > 1,

Sb(A,D,(m,g)) = ﬁxl [ilf),- (:l:) :ilf)j (17)] =1-— BZ(B;)f:I[) . (3)
i#]
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From intuition to metric
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From intuition to metric
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From intuition to metric
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Illustrating self-consistency
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About 20% of COMPAS looks like Ind. 2

Their predictions are arbitrary
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Illustrating self-consistency
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(actually happens rarely in practice)

e == Non-white (NW)

. 0.84 —— White (W)

E 0.6

1 0.4

* 0.2 /

0.0- 1 | 1 1 1 1
0.5 0.6 0.7 . 0.8 0.9 1.0

SC

COMPAS, random forests, B=101
(mean +/- STD over 10 trials)

https://afedercooper.info



Our algorithm (really really quickly)

Self-consistency is derived from variance (High self-consistency — low variance)...

...s0 let’s try to do variance reduction to improve self-consistency

— Leo Breiman’s 1996 bagging algorithm (with a twist)
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An example from our resu.
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Summarizing our experiments
Overall, these patterns hold (and more)

Datasets:
e (South) German Credit We improve self-consistency, attain accuracy, and (in almost every
e COMPAS single case) achieve close-to-fairness ...
e Old Adult
e Taiwan Credit sy G o ol s Fiold-ct: . »orv-hacke
e New Adult (race, sex) ... without using a single field-standard theory-backed

o Income technique that aims to improve fairness

o  Public Coverage
o  Employment
Home Mortgage Disclosure Act (race, ethnicity, sex)
o NY-2017
o TX-2017 We packaged this because we struggled to find algorithmic unfairness above

Models: logistic regression, decision trees, random forests, MLPs, SVMs (most common fair classification models)
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Is this notion of “fairness” easier for lawmakers to understand and implement?

Takeaways

This finding is really shocking
What does it mean for empirical rigor and reproducibility of existing approaches?

Do fairness interventions actually improve fairness in practice?

Are conclusions from prior empirical work confounded by a more general problem of arbitrariness
in predictions?

Arbitrariness is rampant when predicting on social data.

How practically useful are prior theoretical formulation choices?

What happens when what we take as given in research, turns out to not be the case? What
would have happened if we did this simple bagging approach years ago?

What about mutli-class classification? Do you think it extends?
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